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We present a theoretical study of the localization phenomenon of gravity waves by 
a rough bottom in a one-dimensional channel. After recalling localization theory and 
applying it to the shallow-water case, we give the first study of the localization 
problem in the framework of the full potential theory; in particular we develop a 
renormalized-transfer-matrix approach to this problem. Our results also yield 
numerical estimates of the localization length, which we compare with the viscous 
dissipation length. This allows the prediction of which cases localization should be 
observable in and in which cases it could be hidden by dissipative mechanisms. 

1. Introduction 
In this paper, we study surface gravity waves propagating on a one-dimensional 

channel with a random bottom. The case of periodic bottoms has been studied in 
Davies & Heathershaw (1984) and Mei (1985). Various results on hydrodynamics 
with random media or boundaries are reviewed in Mysak (1978). I n  the case of 
random bottoms, Guazzelli, Guyon & Souillard (1983) suggested that the phenom- 
enon known as Anderson localization in solid-state physics could be observed on 
shallow waves : in this case Anderson localization implies that a periodic plane wave 
of wavelength h coming on to the part of the channel with a random bottom will 
eventually be totally reflected. More precisely, the amplitude of the disturbance 
created by the wave dies off exponentially with distance, with a typical length g, 
called the localization length. Experiments to observe this phenomenon are being 
carried out in Marseille a t  the Laboratoire de Physique des Systhmes D6sordonnds by 
M. Belzons, E. Guazzelli and 0. Parodi. The random bottoms that we study in the 
present paper are of the same type as those used in these experiments; this will 
enable a comparison between theoretical predictions and experimental results. 

The paper deals only with linear theories and is organized in two parts. Another 
paper (Devillard & Souillard 1986) discusses, for a nonlinear wave equation in a 
disordered medium, how nonlinearities may modify localization. 

First, in $2, after recalling the basic elements of localization theory, we discuss the 
shallow-water theory on a rough bottom ~ a series of random steps - and we estimate 
the localization lengths for various wavelengths A. In  the asymptotic regimes where 
h --+GO and h -+ 0, the behaviour of localization lengths is derived. 

Since the predictions of the shallow-water theory in the regime h -+ 0 are clearly 
wrong, we then use in $3  the full linear potential theory. Localization of eigenstates 
has not been proved in such a case, so we have to make approximations. We have 
chosen two approximations which are valid independently of the wavelength, and 
are convenient not only for numerics, but also for some analytical results. We first 
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assume that the random steps have a mean length much greater than the height of 
water. This assumption is reminiscent of the ' wide-spacing approximation ' (Newman 
1965; Srokosz & Evans 1979), although we do not have a restriction on the 
wavelength. The second approximation is Miles (1967) approximate variational 
solution to scattering by one step. Within this framework, we have then been able 
to estimate the localization length and also to obtain satisfactory asymptotic 
behaviour for it as h 4 0 0  and A + 0. 

In $4, we discuss some physical phenomena not taken into account within the full 
linear potential theory, phenomena which could hide localization or limit the range 
of validity of our theoretical study. Viscosity can be a major effect, but we show that 
there is a range of wavelengths for which localization should be observable in a tank 
experiment such as the one in Marseille. 

Since the full linear potential theory, and even the validity of the linearization, 
have a scale invariance, the localization length will scale accordingly. Thus our 
results also apply a t  oceanographic scales. 

The experimental results obtained currently in Marseille are in good agreement 
with the results of the present paper. A comparison of the theoretical and 
experimental conclusions will be presented in a forthcoming letter (Belzons et al. 
1988a). A detailed description of the experimental set-up and of the corresponding 
results can be found in Belzons, Guazzelli & Parodi (19888) ; see also Guazzelli (1986), 
Devillard ( 1986). 

2. Shallow-water theory 
We consider a one-dimensional channel and look a t  the propagation of a gravity 

wave. We shall denote by 7 the elevation of the free surface of the liquid due to  the 
travelling of the wave, and by h the height of the channel. If the wavelength h is 
much larger than the depth, and if relative fluctuations of height are not too large, 
the propagation of a surface gravity wave is described by the shallow-waves 
equation 

( 1 )  
g-l a Z 7  

a,@ a, r )  = - at2 . 

Since we will be interested in permanent regimes, we take the Fourier transform with 
respect to time of (1) and obtain 

ga,(h(x) a, Y )  = -w2 Y ( 2 )  

where Y = lR ~ ( x ,  t )  eiWt dt. 

The problem we want to  study is the behaviour of the solutions of ( 1 )  when the 
bottom of the channel is rough, that is, h(x) is a random function. In  that case, and 
for a very large class of random bottoms, a remarkable phenomenon happens: for 
almost every realization of the bottom, all the proper modes of the stationary 
equation ( 2 )  are exponentially localized in space owing to the randomness of the 
bottom; that is, the proper modes decay exponentially with distance for x + f CO, in 
direct contrast to the situation for a flat or a periodic bottom. This phenomenon is 
also closely related to the following one : if we look a t  the transmission t,(L) of a plane 
wave of frequency w by a part of a channel of length L with a rough bottom, this 
transmission decays exponentially with L in the absence of any dissipation in the 
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medium. If one considers the time-dependent problem, the localization of the proper 
modes implies that for any square integrable initial wave, the energy of the wave 
outside a finite region of space remains small uniformly in time for a large enough 
region. The so-called Lyapunov exponent for (2) turns out to be a quantity of 
peculiar interest: it is defined as the asymptotic rate of exponential increase of a 
solution of the Cauchy problem of the stationary equation, namely for given w 

y = lim (2x)-110g(IY(x)12+Ik(x)-1 V(x)I2), 
X++m 

(3) 

where k ( x )  = w(gh(x))-i. 

The exponent y is a natural measure of the rate of increase (or decrease) of an 
oscillatory function; it must be noted that, given any initial condition (Y(O), V ( O ) ) ,  
the same limit y in (3) is attained for almost every realization of the bottom (i.e. with 
probability one in the choice of the bottom); e.g. choose an arbitrary pattern of 
height h, on the interval [0, 11, and reproduce it on each interval [n, n+ 11 with a 
height h, chosen at random independently of the other heights. The ‘almost every’ 
proviso excludes exceptional choices of {hn},Gz which for example happen to be 
periodic in n. If the pattern is varied, the convergence in (3) will work even better. 
Note also that y is independent of the initial condition (Y(O), V(0)). 

It turns out that for a very large class of random bottoms an extension (Kotani 
1982; Minami 1986) of a well-known theorem of Furstenberg (1963) ensures that y 
is positive for almost every w .  In  turn, this implies (Delyon, Simon & Souillard 1987) 
exponential localization of all proper modes for almost every realization of the 
potential. In addition, the Lyapunov exponent turns out to be the rate of 
exponential decay of the proper modes (i.e. they behave as modulo oscillations as 
e-rizl for x -+ 00) ; the transmission coefficient t,(L) of a disordered section of channel 
of length L decreases also as ec2YL as L -+ 00 . The inverse 6 of the Lyapunov exponent 
y is a characteristic length which is naturally called the localization length. 

In fact the localization phenomenon was first discovered by Anderson (1958) in 
solid-state physics when studying Schrodinger equations with a random potential, or 
more precisely discrete equations known as ‘tight binding ’ models. In  the context of 
classical physics, localization was first discussed by Hodges (1982). For reviews and 
references to localization theory, we refer to Thouless (1979), Souillard (1987), Simon 
& Souillard (1984), Lee & Ramakrishnan (1985). In  fact localization is a very general 
phenomenon for linear wave equations in a random medium (Souillard 1987) and 
since the shallow-waves equation (1)  with random height has features very similar to 
the Schrodinger equation with random potential, localization theory can be 
transposed to it with minimal adaptation. 

Since it is known from the theory that the qualitative features of the problem do 
not depend on the details of the model, we have chosen for the present study the 
simplest random bottom allowing comparison with experiments on shallow waves : 
the random bottom is a stepwise function, the length si of the i th step being chosen 
a t  random, independently of the others and uniformly in the interval [smin, smax], and 
the height hi being chosen with uniform distribution in [hmin, hmax]. In  some cases, 
we take the lengths of the steps to be constant, that is Smin = smax (see figure 1) .  

We shall set 
H = i(hmax+hmin)> Ah = i(hmax-hmin), 
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FIGURE 1. Random bottom made of a succession of' rectangular steps of random heights. 

Under these conditions, the continuity of the surface elevation 7 and the continuity 
of the flux a t  points xi imply that 

Y ( X i + C )  = ! P ( X , - € ) .  (46) 
Since the equations can be integrated on each step, the solution can be easily 
reconstructed from the solution a t  points xi. Thus from now on we shall denote 
!P(X,--E) by !Pi and we set A ,  = -h!k;'a, !fl,=,,-, where ki is the wave vector 
corresponding to frequency w for a plane wave on a flat channel of depth hi, namely 
ki = w(qhi)-i. We thus have 

(vi+l, Ai+lIt = M,+l(yiuiAi)t 

with a transfer matrix Mi = S;l Rotsi and where Rot is the rotation matrix of angle 
0, = w(xi - xi-l ) (qh, )-$ and Si is the matrix 

We shall denote 

We have indicated above that all the proper modes of (1) are exponentially 
localized in space for almost every realization of the bottom (Delyon et al. 1987). We 
thus can turn to the evaluation of the Lyapunov exponent y ,  and hence of the 
localization length 5 = y-l. For a given w ,  the Lyapunov exponent y is also given for 
almost every vector W,, and almost every realization of the bottom by 

where X ,  is the absciss of the point where W, is calculated (if the lengths of the steps 
are deterministic, X ,  = N S ;  otherwise for large N ,  X , / N  - 8).  This formula is 
particularly convenient for numerical calculations : a vector Wo is chosen, W, = 
M, MN-l...M2 M, Wo is calculated and, if N is sufficiently large, we observe that 
(2IV-l log ( 1 1  W, 1 1 2 )  tends to a positive constant; typically one has to go to lengths 
X ,  of the order of a few times y-' to see convergence on the computer results. This 
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method will be used later on to obtain estimates of the Lyapunov exponent. 
However, we first discuss another estimate of the Lyapunov exponent which will 
allow us to derive analytically its asymptotics in the regimes w + 0 or w +a. 

2.1. Asymptotics of the localization length for small and large frequency ; 
use of the invariant measure 

The first asymptotic behaviour we can look for is that  a t  long wavelength; it is well 
known (see Papanicolaou 1978) that  in this regime 

for w + 0 y ( o )  - w2 

The second asymptotic behaviour we can look for is that for small wavelength, which 
is discussed now and for which we shall get 

y ( w )  N const for w + co. 

In order to establish this behaviour, we use the fact that the Lyapunov exponent can 
be written as 

IIMi+l K II 
log( IIKII 

y = lim X;l 
N-CC O S i G N - 1  

where 
= Mi Mi-,.. . M, W, 

and we shall take advantage of the fact that, the orientation of the vector 
depending on the realization of the Mi, the probability distribution of its orientation 
will converge to a probability measure pin" when i becomes large. If the matrices 
M, are statistically independent, i t  is known (Furstenberg 1963) that 

= 1(28)-1 d7Jlog ( I I M ( ~ )  ~4 1121  d p i n v ( + ) ,  (6) 

where U# is the unit vector with angle q5 with respect to the x-axis, M(7) is the 
transfer matrix, 7 denoting the set of random parameters. I n  our case, dr is simply 
the product dp,, dp,, the probability distribution of having a step with height h and 
length s. The main interest of (6) lies in the possibility of finding approximate 
analytical solutions for the invariant measure and, from them, approximate 
analytical solutions for the asymptotic behaviour of y ,  as developed below. 

We thus look for an approximation of the invariant measure for small h(h Q smin). 
As h / S  goes to zero, Oi is always much larger than 2n. As soon as hi is allowed to 
fluctuate a little (Ah/H B A/&'), the values of 8% will cover the whole interval [0,2n] 
approximately with uniform density, even if s is deterministic. More precisely, let us 
take a vector with angle (Ox, w) = r$i, and consider the probability distribution 
pk+l of = (Ox, K,,), h, being fixed hi+l and ( Z ~ + ~ - X ~ )  being allowed to vary 
according to the probability p(r) .  We claim that p4t+l will be roughly the image of the 
uniform Lebesgue measure on [0,27c] by the matrix S;l (in Devillard 1986, the above 
assertion is checked numerically and the agreement is good). If we apply (6), we 
obtain for w +co 

y(w = co) = 2-' [ J8-l dp(s)] { /[dp(h) dp(h' ) ( 2 ~ ) - ~  d0 d$ ss 
log ((cos 8 cos $- sin 8 sin $ ) 2 +  (hisin 8 cos $ + h'i cos 8 sin $)2 

- log cos2 $ + h' sin2 $) . 11 
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FIGURE 2. </A' as a function of A/S (shallow-water theory). The values of the parameters of our 
model are: Ah/H = 0.3, As/S = 0.1 for the continuous curve, and As/# = 0.5 for the dashed 
curve. 

Using 

log (1 +a sinx+b cosx) dx = 27t [log (1 + (1 -a2-b2)t) -log 21 s O < X < P r r  

we find 

where the double brackets denote the average with respect to the distribution of h 
and h'. One can show, in particular in view of $ 3  below, that the above formula is 
exact in the limit h + 0 and H / h  0 with 

Ah [ ( h m i j ]  ' "-' H 
H l+log h,,, 

If the disorder on the heights of the steps is weak (i.e. Ah 4 h,,,), we have 

The above result for y(w = co) can also be derived using the non-independent 
matrices Rot S,(S,-, )-l. 

2.2. Numerical results for the localization length 
We have calculated numerically the localization length fl  = l / y  when s is randomly 
chosen in [S-  As, S + As]. When (As / s )  is small, we observe resonances, which tend 
to disappear as (As/S) increases (see figure 2). This corresponds to the fact that for 
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FIGURE 3. Log-log plot of [/h' as a function of A/s. (The slope of the straight line is 2 . )  Here s 
is taken deterministic and Ah/H = 0.1. 

As/& small, the lengths of the steps correspond almost to a periodic situation: 
although the heights can be random, a certain amount of periodicity in the direction 
of the x-axis remains. These resonances are then a reminder of the effects of passing 
bands in periodic structures. 

On figure 2 ,  the change of behaviour from small to large 4 occurs typically a t  
h - 6s ;  simulations not represented on the figure show that this change of behaviour 
happens at  larger h when disorder increases. Beyond this crossover value of A,  the 
waves become very ill localized. At large A,  we have checked tjhe (wV2 = h2)- 
dependence of the localization length which was mentioned in the previous subsection 
(see figure 3). 

On figure 2, we see also that [ goes to a constant a t  small A,  in good agreement with 
the results of the previous subsection (see figure 4). 

Of course, the above behaviour of the localization length a t  small wavelengths 
holds only within the shallow-water theory, but is unreasonable from the 
hydrodynamical point of view: this will be corrected in $3, where we shall handle the 
study of localization within the full potential theory. 

Other physical limitations to  the theory such as the effects of nonlinearities, surface 
tension and viscosity will be discussed in $4. 

3. The full potential theory on a random bottom 
The shallow-wave approximation is no longer valid when the wavelength h is 

comparable with or smaller than the depth of the channel. Even in the case of large 
wavelength, when relative fluctuations of height of the channel are important, 
shallow-water theory is not valid (cf. (14) below). Therefore, we study the full 
linearized potential theory. 



528 

103 

5 - 
S 

102 

10 

P. Devillard, F .  Dunlop and B. Xouillard 

10-2 ' 10-1 i 
Ah 
H 
- 

FIGURE 4. [IS as a function of A h / H ,  with A/S 4 1. Here As/S = 0.5. The continuous curve 
represents the analytic formula (7) ,  the vertical bars denote the numerical estimates together with 
their errors. 

Denoting by v the velocity, we have: v = Re ( -e-iwt grad @), @ being the velocity 
potential. The equation for @ is still A@ = 0 with boundary conditions: 

a , @ + W 2 g - l @ = 0  o n y = O ,  

= 0 a t  the bottom. 
a@ - 
an 

The elevation 9 of the free surface is then given by 

9 = Re ( - iwg-'@ ePiwt). 

For such a system, when the height of the bottom is random as in $2,  there are, up 
to now, no results on the possible localization of proper modes, nor on the bchaviour 
of the transmission ; we develop such a theory here for the first time, using a method 
of renormalized transfer matrices. It will allow us to  show localization of all proper 
modes in a natural situation and also to get numerical results on the localization 
length as well as analytical predictions for various of its asymptotics. 

We first recall some standard results ; the experts can go directly to the discussions 
after (11)  and (14). 
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3.1. Lineur potential theory on u piecewise-constant bottom 

As in $ 2 ,  we shall consider a piecewise-constant bottom. Denoting by @, the velocity 
potential in the i th region, one has 

A@, = 0 forxi-l < x < xi (0 < y < h,)? 
a , @ , + d g - l @ i  = 0 forxiPl < x < X, ( y  = o),  

a,@, = 0 forxi-l < x < xi ( y  = h i ) ,  

together with the matching conditions 

= @i-l for x = (0 < y < Min (hi, )), 

(0 < y < Min (hi, hiPl )). 

a, @, = 0 

a, @, = az QiPl 

forx = 

for x = 

< y < hi (ifh,-l < h , ) ) ,  

In  each region of constant depth, the solution can be expanded over a complete set 
of explicit solutions : 

Qi(x, y)  = (A, eikz + B, e-ikz) x J y )  + C D i ( ~ , )  e-Kn("-zl-l) $i ( K n ,  Y)  
K n  

+ C  C,(K,) eKn(z-zg) $ , ( K ~ ,  y ) ,  (10) 
Kn 

where ik and K ,  (n = 1, 2, ...) are solutions to  the dispersion relation 

and x i ( y )  = F(ik, Y ) ,  $ i ( K n ,  Y )  = '(~n, Y )  

with F ( K ,  y )  = ~2(h , -K- ls in2~hi ) - tcos  ( ~ ( h , - y ) ) .  

The problem of linear wave propagation on a one-dimensional random bottom 
can now be formulated as follows : we have two propagating modes, described by the 
coefficients A, and B, in (lo), coupled to infinitely many non-propagating modes, 
described by the coefficients D,(K%) and C,(K%), n = 1 , 2 ,  . . . ; the coupling comes from 
the matching conditions (9). 

A possible approach to this problem would be to truncate the sum over K ,  at  some 
order N ,  and study products of random (2N + 2) x (2N + 2 )  matrices. One could then 
in principle compute N + 1 positive Lyapunov exponents ; the smallest of these, 
which is obtained last, will be the inverse of the localization length. Such an approach 
would be very unwieldy and lengthy numerically if N is not small. 

The approach that we have chosen instead is based on the following observation : 
the non-propagating modes decay uniformly with wavelength, away from the edges 
of the steps: 

(12) e-Knlz-zi-ll < e-(n/2h8)lz-zt-11 v 
In  view of this, we have restricted our attention to random bottoms such that the 

lengths of the steps are much greater than the depth of water: 

Ixi-xi-ll 9 hi. (13) 

We can then assume that the non-propagating modes originating a t  one step are 
negligible when they reach the next step. This is like the wide-spacing approximation 
of Srokosz &, Evans (1979), who assume, instead of (13), that  the distance between 
two obstacles is large compared with the wavelength. 
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Wc still have infinitely many modcs coupled on the edge of each step. just as in th r  
much-studied case of a single step. or shelf. Here we havc chosen to  ineorporatc Milcs’ 
approximate variational solution (Milcs 1967). which is a good approximation at  all 
wavelengths. As wc arc’ going to  use the explicit form of this solution. wc first reed 
briefly how it is obtained. 

3.2. The transfer matrix for a shelf in Milps’ theory 

The height of water is h, for x > 0 and h, > h, for x < 0 ;  the horizontal component 
of the velocity, denoted U ( x ,  y) ,  satisfies 

c‘ - ( i k , A , e ’ k ~ x - i k l B 1 ~ ~ - 1 k ~ 5 ) ~ 1 ( y )  as . r++co.  

U - ( i k , A , e 1 k ~ 5 - i k 2 H , e - - l k ~ ~ ) X 2 ( ~ )  asx+--Oo. 

At x = 0, I r ( O ,  y)  must be linear in ( A ,  + B , )  and ( A , + H , ) :  

U(0,Y) = (A,+B,)u,(y)+(A,+B,)u,(y) (0 -= Y < h).  

Now the approximation, which is supported by a variational argument, is that  thc 
unknown functions ul(y) and u2(y )  are both taken proportional t o  xl(y) .  Miles then 
solves exactly for the scattering matrix and obtains : 

N = 2K(k, k2)i sinh (k2(h,  - h,)) (k;  - k;)-l 

(Kh,  + sinh2 k ,  h,)-f (Kh,  + sinh2 k,  h2)-:.  

S = 4X2 k,(Kh, + sinh2 k,  h,)-l C Ksn(k: + K : ~ ) - *  
n 

sin2 ( ~ , ~ ( h ,  - h,))  (Kh ,  -sin2 K , ~  h2)-l 

In  order t o  use Miles’ result in our problcm. we need a transfer matrix rathcr than 
a scattering matrix. We also replace ( A , ,  B,) by the following more physical 
coefficients in our context : 

Yi = (A ,  e i k ~ x ~ +  H, e - l k ~ z ~ )  ~ ~ ( 0 ) .  

We thcn have, taking into account both scattering a t  step xi and propagation 
between xi  and xi+,. 

where Rot is the matrix of rotation by an  angle Oi = ki+,(xi+,-xi) and 

( ~ i + , ~  = R,, Mi(ul,, Qi) t ,  

where xi = x i ( y  = 0) = d2(hi+K-’s inh2kihi ) - fcosh(k ihi ) .  

- 1 2 hi, 
+ 1 ifhi+, < hi, 

J i  = { 
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and N ,  and X ,  are given by (14), where the smaller of hi and hi+, must play the role 
of h, and the larger the role of h,. 

The scale invariance of the initial equations has of course been preserved 
throughout : the matrices Rot and M, are invariant under 

hi -+ 7hi, 

k, -+ 7-l k, 

K + 7-IK,  

(and w 2  --.) 7-1 w2 in the dispersion relation), 

"%i+l-xi -+ 7(xi+l-xi). 

The results presented below will therefore be displayed in a scale-invariant form, 
in terms of AlS, H I S ,  Ah lH,  ASIS and [ IS ,  where H is the mean height, h the 
corresponding wavelength, S the mean length of a step and 5 the localization 
length. 

Note that in the limit of large wavelengths, the matrix Mi reduces to 

where h, = Max (hi, hi+l) and h, = Min (hi, hi+,). 

diagonal term in Mi will therefore be negligible when 
As h gets very large, X is of the order of k,h,(log(ksh,)-l+log(h,lhs)). The off- 

This 'shallow-water ' condition may be simplifed as 

Therefore, for a given disorder and large A,  the matrix Mi reduces to 

which is the matrix obtained from the shallow-water theory in the basis we have 
chosen. 

3.3. Products of renormalized transfer matrices and localization of waves 
in the full potential theory 

As seen from the two previous subsections, the study of waves on a random bottom 
in the full potential theory can be associated to a problem of products of random 2 x 2 
renormalized transfer matrices. The situation is now very reminiscent of the shallow- 
water case: the Lyapunov exponent associate with the products of such random 
matrices will again be positive and again from this we can see that all proper modes 
are exponentially localized ; furthermore the localization length can be numerically 
computed as the inverse of the Lyapunov exponent associate with the products of 
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FIGURE 5.  &IS as a function of h /S .  Here As/# = 0.5, Ah/H = 517, HIS  = 7/16. The continuous 
curve corresponds to the shallow-water theory, the bars to the numerical simulations for the full 
potential theory ; the dotted line corresponds to a crude estimate of the viscous dissipation length 
Z u , o  when the scale is fixed by S = 4 cm. 

the renormalized transfer matrices and we can deduce the behaviour of the 
localization length in various asymptotics. At fixed disorder, for large A,  shallow- 
water theory is of course recovered. However, a t  small A,  the asymptotic behaviour 
is now very different from that of the shallow-water theory : it can be shown that the 
localization length diverges exponentially in the asymptotic limit h + 0 (see the 
Appendix) as 

5 N (exp { - 4w2 g-l h))- l  x 
instead of going to a constant as predicted by the shallow-water theory. Physically, 
this high-frequency regime can be understood as follows: a surface wave creates a 
disturbance in the velocity potential which is mainly localized in a strip of height 
typically g / w 2 ,  near the surface, if g/w2  $ h. In  deep water, the disturbance dies off 
exponentially and thus, as o increases, the wave will be less and less sensitive to the 
fluctuations of the bottom. 

We can use our approach to obtain numerical estimates of the localization length. 
The results of the numerical simulations are presented in figure 5. The shallow-wave 
theory and our full potential theory are in good &greement, as expected, for large h 
and differ significantly for small A ,  as predicted theoretically above. 

I n  figure 5, the viscous dissipation length as evaluated in $4 below is also displayed 
in order to allow a discussion of the possible observation of localization (see 34). 
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4. Possible observation of localization and physical limitations 
In  order to ascertain qualitatively whether these localization effects can be seen 

experimentally, we must discuss the physical phenomena that could hide localization 
or, a t  least, limit the range of applicability of the theory developed above. 

In  an experimental set-up such as that in Marseille (see Belzons et al. 19883; 
Guazzelli 1986), three physical aspects that we have not taken into account are : the 
effects of viscosity; the limitations of the linear theory due to the presence of 
nonlinear terms; the effects of surface tension. 

4.1. The eflects of viscosity 

In the linear theory used above, we have completely neglected the effect of 
dissipation ; clearly dissipation implies exponential decay of transmission. Since one 
of the most natural ways of observing localization would be to observe the 
exponential decay of transmission with length, a strong attenuation due to 
dissipation would make it difficult to separate the attenuation due to localization. 
The effect of localization would not be hidden by dissipation if the localization length 
is shorter or of the order of the viscous dissipation length I,, whereas if I, < 5 
localization effects may be hidden by the dissipation effects. It is thus important for 
our purpose to estimate the viscous dissipation length. 

A comparison of the dissipation length and the localization length a t  large 
wavelength for a particular model can be found in Akkermans & Maynard (1984), but 
this is a regime for which localization would be, in any case, unobservable since the 
localization length is there very large. 

To get an estimate of the viscous dissipation length for all reasonable wavelengths, 
we use the full potential theory for a laminar flow (note however that for abrupt 
steps, the flow will not be laminar near the bottom). For a laminar flow, there are two 
different mechanisms of viscous dissipation : dissipation in the bulk of the fluid and 
dissipation near the bottom and the edges of the channel (Landau & Lifschitz 
1971). 

For a channel with a flat bottom of depth h and width b, the dissipation length 
is 

where 

and U is the group velocity, 

cosh2 (Eh) 
U = 2-'gi ( k  tanh (Eh))-i 

For large wavelengths, dissipation takes place mainly near the bottom and the edges 
of the channel and y, takes the simple form (for b $ h) 

For short wavelengths, dissipation takes place mainly in the bulk and y, takes the 
form 

y,(h) - 4vg-i (27clh);. 
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We obtain a rough estimate of the inverse of the viscous dissipation length on a 
stepwise-constant bottom by averaging yu with respect to h : 

Yu(h) dh, 

On figure 5 in $ 3  above, the dotted line represents lv30/S as a function of A/S, with 
X = 4 c m .  

The essential conclusion that can be drawn from this figure is that there is a 
significant range of wavelengths for which the localization length is shorter or of the 
order of the viscous dissipation length. We can thus predict that localization will be 
observable in this range of wavelengths. 

Notice also that the viscous dissipation length, which is not scale-covariant, should 
increase faster than linearly with the scale. Therefore larger scales should be easier 
for the observation of localization 

4.2. Limits of the linear theory 
On a flat bottom, the weakly nonlinear theory gives Stokes waves. The first nonlinear 
corrections to the linear potential theory are negligible there when 

y < 1. (16) ky 4 1, $1 < 1 ,  k-2h-3 

In the Marseille experiment, y - 1 mm is compatible with the above restrictions, 
and the observed nonlinear corrections are a t  most a few per cent. This suggests that 
the linear theory, on such bottoms as we consider, has a certain stability with respect 
to small nonlinearities satisfying the local conditions (16). 

An interesting question is certainly the study of the joint effect of localization and 
nonlinearities ; some results on the transmission problem for the nonlinear 
Schrodinger equation with a random potential have been obtained recently 
(Devillard & Souillard 1986). 

4.3. Surface tension 

When h is very small, the effects of surface tension also become relevant. The 
wavelength is to be compared with the capillarity length of the fluid a = (2a/ (pg)) ;  
where p is the volumic mass of the fluid and a the surface tension for the air-fluid 
interface (a  x 3.9 mm for water). Neglecting surface tension gives a relative error 
2.n2 a2 when solving the dispersion relation for k or A. This error will be negligible 

A + 2/2na x 1.7 cm. for 

5. Conclusion 
We have studied in this paper the phenomenon of Anderson localization for water 

waves, first with the shallow-water wave equation, then using the full potential 
theory and finally discussing and estimating the various phenomena limiting their 
possible experimental observation. The main conclusion is the prediction of a 
range of wavelengths for which the localization phenomenon will be observable. 
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Appendix 
I n  this Appendix we derive the asymptotics of the localization length in the short- 

wavelength regime in the framework of the renormalized-transfer-matrices approach 
developed in this paper. In  order to simplify the notation, we set Y+,$ = Y(x,+E), 
and we use 

Since 0 = k i s ,  and since ki -+a as K +a, we may approximate the invariant 
measure by the Lebesgue measure. We neglect the correlations between the matrices 
and we shall perform the calculation for the case where the lengths of the steps s are 
deterministic. Then we have 

+ (WJ sin 8) ,  , 1 
where r stands for the set of all random variables on which the matices depend. 
When the height of the steps is drawn with uniform probability between hmin and 

1 

Now, N and X can be readily expressed as functions of h, and h,, h, = Max (h,, h2) ,  
h, = Min (h,, h,) (N and X are symmetric in h, and h,). Using 

log (1 +a sin x + b cos x) dx = 2n [log ( 1  + ( 1  - a, -b2)i)  - log 21 Jo < z < 2n 

if a2+b2 < 1,  we have 

1 cos 8--sin 8 + (N-l  sin 6)2 s Ogi3i2n N " ) '  
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Since the cases J = 1 and J = - 1 occur with the same probability, we obtain 
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(4Ahj2)-1 dh, dh, 11 y = (ax)-' 
hrninshsGhrnax 
hmin < h ,  <h2 

x {log { f [.. +Y]} + log {; [ 1 + (1 - [ 2x/(.. + Y)J 
- [ N2--  ';;"'I" [..+2jq2)]}}. 

We are now left with the problem of calculating N and X. Let us first define 
h = (k,/k,);. We have 

AN = sinh(k,(h,-h,)) (k , -kD)-'  sinh-'(k,h,) sinh-'(k,h,) (ks+k , ) - '2Kk ,  

Let us set now 
. ( l +  sinh2 k, h, 

a = sinh(k,(h,-h,)) (ks -kD) - '  sinh-'(k,h,) sinh-'(k,h,) 

- sinh (k,( h, - h,)) 
sinh ( k ,  h,- k ,  h,) . 

- 

A. 1. Calculation of k ,  -K and k, -K 
We set k ,  h, = a, Kh, = 6 ,  #(x) = x tan hx. We have 

thus 

b( 1 - tanh b)  = (a-b)  [tanh b+b( 1 - tanh2 b)]  + (a-b)' (1 - tanh26') (1 -6' tanh 6'). 

Neglecting the last term, we obtain 

k, -K = 2K[e -2Kh~+( (1 -4KhD)  ~ C ~ ~ ~ D + . . . ] .  

We then check tha t  (a-  b ) ,  (1 - tanh2 6') (1 - 6' tanh 0) is at least of order e-5Khn. 

By expanding the previous formula for a,  we now obtain 
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with 7 = (Kh$ (e-2Khs-e-2KhD)2. We thus have - 
01 N 5 N K-l{ 1 + 2Khs[e-2Khs + ePzKhD I} + O( (Kh,)' e-4Kh~),  

K 
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N = 1 + O( (Khs)2 e-4Khs )> 

X = 4K2 k,(Kh, + sinh' ( k ,  h,))-l C, 

C =  x k(ki + k2)-2  (Kh, - sin2 sin2 (k(h,  - hs)),  
with 

k, non propa ated modes 
correspon8ing to h D  

X - 16 K3 e-'Khs N e - ' K h ~ ,  

N 2  = 2 + O( (KIL,)~ ePsKhs). 

Hence, the behaviour of y :  

Y (8-l) J[ (4Ah2)-l X 2  dh, dh,, 
hmin4h <hmax 
hm,,9h;<hD 

y - (s-l) 
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